If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-128x-1600=0
a = 1; b = -128; c = -1600;
Δ = b2-4ac
Δ = -1282-4·1·(-1600)
Δ = 22784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22784}=\sqrt{256*89}=\sqrt{256}*\sqrt{89}=16\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-16\sqrt{89}}{2*1}=\frac{128-16\sqrt{89}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+16\sqrt{89}}{2*1}=\frac{128+16\sqrt{89}}{2} $
| x+2x+4x–6=15 | | n/3-4=13 | | x/9–11=-2 | | 10x+23=93 | | 7.6x+4.05=-3.5(0.2+0.7x)+5.3x | | 0.09i=-6.3 | | 6x+11+7x-8=90 | | | | 6x-9+2x=7 | | (y-9/7)7=-3 | | |k−9|=17 | | 4a+13=3a-11 | | 49+c=56 | | 2(1/3r+1/3)=1/4+3/2r | | -62=-6+7x | | -5(2+5n)-2n=-10-4n | | -2+7k-2+6k=-4+5k+8k | | -3x-2(x-6)=-5x+13 | | 12+2n=-1/2(12-16n) | | 9-2x+5)=3x-(5-5x) | | -4m+1=-23 | | F(x)=π+3x | | -12c-53=-53(53c+1) | | 56=3x+2+13x-3 | | -44+8x=8(-5+x) | | (x-5)=625 | | 2-4k=10+1-3k-6 | | 14=5g+2g | | 7^(x+1)=488 | | 0.7a-3=1 | | 14=v/3-13 | | 4w^2-10w=0 |